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The fragility of opinion formation in a complex
world
Matúš Medo 1,2,3✉, Manuel S. Mariani 1,4 & Linyuan Lü 1,5,6

How does the complexity of the world around us affect the reliability of our opinions?

Motivated by this question, we quantitatively study an opinion formation mechanism

whereby an uninformed observer gradually forms opinions about a world composed of

subjects interrelated by a signed network of mutual trust and distrust. We show numerically

and analytically that the observer’s resulting opinions are highly inconsistent (they tend to be

independent of the observer’s initial opinions) and unstable (they exhibit wide stochastic

variations). Opinion inconsistency and instability increase with the world’s complexity,

intended as the number of subjects and their interactions. This increase can be prevented by

suitably expanding the observer’s initial amount of information. Our ndings imply that an

individual who initially trusts a few credible information sources may end up trusting the

deceptive ones even if only a small number of trust relations exist between the credible and

deceptive sources.
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Identifying potential mechanisms behind the formation of
opinions in society is vital to understand how polarization
emerges in society1, how misinformation spreads and can be

prevented2, and how science can be effectively communicated to
the public3. Despite recent advances in how opinions propagate
in social networks1, how articial agents promote low-credibility
content in social media4,5, and how rapidly misinformation
spreads compared to reliable content2,6, misinformation still
thrives in our society. This is well-exemplied by the recent
growth of anti-vaccination views and the related existence of anti-
vaccination clusters in online social networks7. The popularity of
unreliable opinions—which is especially dangerous during global
emergencies, such as the recent COVID-19 pandemic8—calls for
a deeper investigation of the possible drivers behind the process
whereby individuals form opinions in a society.

Models of opinion formation in social systems have been
studied in statistical physics9–11, sociology12–16, and game
theory17. They focus on opinion propagation on a social network
of inuence and allow us to model phenomena such as the
emergence of consensus in the population, for example. Most
existing models, however, neglect the potential interconnected-
ness among topics, which is instead a key aspect of modern social
and information environments18,19. These models view opinions
of an individual on different topics as results of independent
realizations of opinion formation processes, and they neglect
direct connections among opinions on distinct topics.

Departing from existing models, we consider a situation where
an individual observer forms opinions about a set of subjects
interrelated by positive and negative links. The subjects on which
the opinions are formed can represent governments, politicians,
news media, or other individuals. Connections between subjects
can take various forms20. One credible news source can, for
example, tend to report in agreement with another credible
source (a positive link) whereas a misinformation source can tend
to disagree with both credible information sources (negative
links). Such systems with signed relations are described by Hei-
der’s social balance theory21–23 as documented using data on
armed conicts among countries24,25 and large-scale social
media26–28, for example. Of particular interest is the tendency for
the subjects to form two opposing camps24,29,30, although these
macroscopic structures are generally imperfect. Two countries,
for example, can belong to the same alliance whose members
generally have positive relations, yet their mutual relation can be
negative due to historic or economic reasons. In science, there are
multiple Nobel prize recipients who endorsed unscientic
theories31.

We study how an observer equipped with prior information
about some subjects can use noisy signed relations between sub-
jects divided into two camps to form opinions on the remaining
subjects. Forming a reliable opinion in a complex situation

requires effortful reasoning. However, psychological research
indicates that humans tend to be rather driven by simple heuristics
when forming opinions about complex topics, sometimes reaching
opinions that violate basic logic rules32,33. The limitations of our
cognition have important consequences. For example, the sus-
ceptibility to partisan fake news was recently found to be driven
more by “lazy reasoning” than by partisan bias34. For this reason,
we focus here on local rules (heuristics) of opinion formation
using a signed network of relations.

We nd that even a small fraction of misleading links in the
relation network among the subjects (e.g., a link of mutual trust
between a scientic and low-credibility information source) leads
to the resulting opinions that are both inconsistent with the
observer’s seed opinions and vary signicantly between model
realizations. We determine analytically the relation between
average opinion consistency and the world complexity, repre-
sented by the number of subjects, which demonstrates that opi-
nion inconsistency grows as the world complexity increases. This
increase can be prevented by suitably increasing the observer’s
initial number of independent opinions. Although opinion con-
sistency depends on network topology and can be improved by
considering a more sophisticated local opinion formation
mechanism, our main conclusions are robust to variations of the
network topology and the opinion formation mechanism.

Our ndings point that even in the absence of social inuence,
opinion formation in a world composed of many interrelated
subjects is inherently fragile. Since subjects may represent co-
existing scientic or low-credibility information sources, our
model presents a contributing mechanism for how misinforma-
tion sources may gain their audience. Our work paves the way to
studying strategies to increase the reliability of opinion formation.

Results
Opinion formation model. We consider an individual observer
who gradually develops opinions on a world composed of N
interrelated subjects (Fig. 1a). The number of subjects represents
the complexity of the world. Each opinion is for simplicity
assumed to take one of three possible states: no opinion, a
positive opinion (trust), or a negative opinion (distrust). The
observer’s opinions can be formally represented by an N-
dimensional opinion vector o whose element oi represents the
opinion on subject i; oi∈ {−1, 0, 1} corresponds to a negative
opinion, no opinion, and a positive opinion, respectively. The
subjects form a signed undirected network of relations. These
relations are represented by a symmetric N ×N relation matrix
whose element Rij represents the trust relation between subjects i
and j; Rij∈ {−1, 0, 1} corresponds to a negative relation, no
relation, and a positive relation, respectively. We emphasize the
main difference between this setting and traditional opinion
formation models based on propagation on networks of social

Fig. 1 The opinion formation model. a An observer faces a set of subjects that are interconnected by mutual relations of trust (solid green lines) or distrust
(dotted red lines). Starting from a small set of seed opinions (here one positive seed opinion marked with + in a black circle) and a world of unknown
subjects (gray circles), the observer gradually forms opinions on all subjects. b The formed opinion is determined as a product of the opinion on a chosen
source subject (one of the seed subjects or any other subject on which an opinion has been already made) and the sign of the relation between the source
subject and the target subject. A positive opinion is formed when the source opinion and the relation are both positive or both negative; a negative opinion
is formed otherwise.
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inuence9,10,13,14: In existing models, simulating the opinion
formation on N subjects would require running N independent
realizations of the opinion formation process, which would miss
the interconnectedness among subjects; by contrast, in the pro-
posed approach, the interconnectedness among subjects is natu-
rally encoded in the relation matrix R.

The observer’s opinion formation starts from an initial
condition where the observer has an initial opinion on a “seed”
subset of subjects, S (seed opinions). The observer then gradually
forms an opinion on each of the remaining subjects via sequential
opinion formation, until opinions on all subjects are formed.
Once formed, the opinions are not updated (we relax this
assumption later). In one step, a target subject i is chosen at
random from the pool of subjects with no opinion (oi= 0). The
observer then attempts to form an opinion on i. From all subjects
j with an opinion (oj ≠ 0) that are adjacent to i (Rij ≠ 0), we choose
source subject k at random. The opinion oi is then set to okRki (see
Fig. 1b). As a result, a positive opinion on i is formed if either: (1)
the observer has a positive opinion on k and the relation between
k and i is positive (“the friends of my friends are also my friends”)
or (2) the observer has a negative opinion on k and the relation
between k and i is negative (formalizing the ancient proverb “the
enemies of my enemies are my friends”). A negative opinion on i
is formed otherwise. Note that this mechanism produces a
balanced triad consisting of the observer and subjects i and k (in
Heider’s original sense of heterogeneous triads that can include
both individuals as well as objects21,35). The observer then
continues with a next subject until opinions on all subjects have
been formed. This opinion formation process—which we refer to
as the random neighbor rule as it forms opinions using
neighboring subjects chosen at random—is purposely simple as
it intends to imitate an observer with limited cognitive resources
(see ref. 34 for a recent account on susceptibility to fake news
driven by “lack of reasoning”). We study a more thorough process
(majority rule) below.

The opinion formation outcome is not deterministic (except
for the special case when all paths in the subject network are
balanced; see Sec. S1 in the Supplementary Information (SI)) as it
is inuenced by: (1) the order in which subjects are chosen as
targets and (2) the choice of the source subject for each target
subject. For a given relation network and a set of seed opinions,
various resulting opinions are thus possible. Individual realiza-
tions of the opinion formation process correspond to a
population of independent individuals or, alternatively, various
possible “fates” of a single individual. To characterize statistical
properties of the resulting opinions, we study outcomes of
multiple model realizations. For simulations on synthetic relation
networks, we additionally average over various network realiza-
tions to remove possible effects of a particular network realization
on the results.

Opinion formation simulations on synthetic networks. We now
study the opinion formation model on a specic relation network
where the subjects form two camps. This scenario is relevant to
various real situations24,29,30: The two camps can represent two
opposing political parties (such as democrats and republicans),
standard news outlets and false news outlets, or scientists and
conspiracy theorists, for example. In synthetic networks, each
camp consists of N/2 subjects. Every subject is connected by
signed links with z random subjects, thus creating a regular
random network of trust with node degree z. If subjects from the
same camp are linked, the sign of their relation is +1 with
probability 1− β and −1 otherwise. Similarly, if subjects from
different camps are linked, the sign of their relation is −1 with
probability 1− β and +1 otherwise. Parameter β∈ [0, 0.5] thus

plays the role of structural noise. As β grows, the negative rela-
tions become more common within each camp and positive
relations become more common across the camps. When β= 0.5,
the two camps become indistinguishable by denition. The net-
work’s level of structural balance22,36 is the ratio of the number of
balanced triads to all triads in the network. In our case,

B ¼ ð1 βÞ3 þ 3ð1 βÞβ2; ð1Þ

which corresponds to either all links of a triad (the rst term) or
one link of a triad (the second term) respecting the two-camp
structure, producing a balanced triad as a result. B grows
monotonously with β. The equation can be inverted, yielding
β ¼ ð1þ 3


1 2B

p
Þ=2, which can be used to write our results in

terms of B instead of β.
We assume that the observer has initially a positive opinion on

NS seed subjects from camp 1, and we examine whether the
observer ends up with a positive opinion on other subjects from
camp 1 and a negative opinion on subjects from camp 2, or not. If
the two camps represent scientists and conspiracy theorists, for
example, the corresponding practical question is whether an
observer who initially trusts a scientist would end up predomi-
nantly trusting scientists or conspiracy theorists. Without noise
(β= 0), the opinion formation leads to a denite outcome: A
positive opinion on all subjects from camp 1 and a negative
opinion on all subjects from camp 2. In such a case, we say that
the opinions are perfectly consistent with the underlying two-
camp structure of the relation network among the subjects.
Opinion consistency of a resulting opinion vector, o, can be
measured as

Cðo;TÞ ¼ 1
N  NS

∑
j =2S

ojTj ð2Þ

where S is the set of seed subjects and T is the vector representing
the ground-truth structure of the relation network (in our case, Tj
= 1 for j from camp 1 and Tj=−1 for j from camp 2). If the
observer’s opinions are chosen at random, the resulting
consistency is zero on average. A zero or small consistency value
thus indicates that the observer’s opinions are independent of the
seed opinion and thus inconsistent with the two-camp structure
of the relation network. Negative consistency is also possible: The
observer starts with a positive opinion on subjects from camp 1
but ends with more positive opinions in camp 2 than in camp 1.

Knowing that opinion consistency is one in the absence of
noise, how does it change as the noise parameter β grows?
Numerical simulations for a set of 100 subjects and one seed
opinion show (Fig. 2a) that opinion consistency decreases rapidly
with β. Indeed, if the relationship between consistency and noise
was linear, we would have expected C0(β)≔ 1− 2β which starts
at one when β= 0 and reaches zero when β= 0.5 as the two
camps then cannot be distinguished by denition. By contrast, we
observe a substantially faster decay of the mean consistency μC(β).
In addition, the consistency values vary strongly between model
realizations. For β= 0.02, for example, mean consistency is only
0.80 and there are model realizations with consistency below 0.54
and above 0.97 (the 10th and 90th percentile, respectively, of the
obtained consistency values for z= 4). This means that even
when the noise is small, some sets of formed opinions are in a
dramatic disagreement with the observer’s seed opinion. To
appreciate the level of noise in real data, Moore24 reported that
80% of triads among middle East countries are balanced.
Equation (1) shows that such a level of structural balance is
achieved at β ≈ 0.08 in our two-camp networks. In Fig. 2b, mean
opinion consistency at β= 0.08 is as low as 0.42 (for z= 10).
These results conrm our initial hypothesis that a realistic level of
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noise leads to the adoption of a large fraction of opinions that do
not align with the observer’s initial opinion.

Master equation for opinion consistency and its solution. The
opinion formation with the two-camp structure can be studied
analytically under the assumption of homogeneous mixing37. It is
advantageous to study the problem in terms of the number of formed
opinions, n, and the number of consistent opinions, c (that is, the
opinions that are consistent with the seed opinions and the two-camp
structure). By rewriting the sum ∑j≠iojTj in Eq. (2) as 2c−N+NS,
we obtain opinion consistency as C= (2c−N+NS)/(N−NS).

When the observer forms a new opinion, n increases by one
and c either increases by one (if the new opinion is consistent) or
remains constant. We introduce the probability distribution of c
when n opinions have been formed, P(c; n), for which the master
equation (see “Methods” for the derivation) has the form

Pðc; nÞ ¼ Pðc 1; n 1Þ cð1 2βÞ þ βðnþ 1Þ 1
n 1

þ Pðc; n 1Þ 1 β cð1 2βÞ
n 1

  ð3Þ

The initial condition P(NS; NS)= 1 represents that all NS seed
opinions are consistent. Equation (3) can be solved numerically
and the obtained solution P(c; n) can be used to compute the
corresponding mean opinion consistency. The numerical solution
agrees well with the model simulations (Fig. 2b), in particular
when the relation network is not sparse (z≳ 10).

Equation (3) allows us to analytically study the dependence
between opinion consistency and the world complexity, represented

by the number of subjects, N. A surprising nding is that as the
number of subjects increases, the distribution of C obtained by
solving Eq. (3), P(C), does not approach a well-dened limit
distribution, but instead steadily shifts toward C= 0 and becomes
narrower in the process (Fig. 2c). We study this behavior by
computing the mean opinion consistency, μC(N), and the standard
deviation of consistency, σC(N) (see Sec. S2 in the SI for details and
additional analytical results).

Multiplying Eq. (3) with c and summing it over c=NS,…,N
yields the recurrence equation

hcðnÞi ¼ n 2β
n 1

hcðn 1Þi þ β ð4Þ

with the initial condition 〈c(NS)〉=NS (the seed opinions are
assumed to be correct). This recurrence equation can be solved in
general, yielding

hcðNÞi ¼ 1
2

N þ ΓðN þ 1 2βÞΓðNS þ 1Þ
ΓðNS þ 1 2βÞΓðNÞ

 
: ð5Þ

For NS= 1, the corresponding mean consistency is

μCðNÞ ¼ ΓðN þ 1 2βÞ
Γð2 2βÞΓðNÞ 1

 
=ðN  1Þ ð6Þ

which simplies to μC(N)= 1 when β= 0, as expected. The
leading contribution of Eq. (6) is

μCðNÞ ¼ N2β=Γð2 2βÞ þ Oð1=NÞ: ð7Þ
This shows that when β > 0, the mean opinion consistency

vanishes in the limit N→∞. The leading-term contribution to

Fig. 2 Opinion formation on random relation networks with a two-camp structure. a Examples of adjacency matrices of regular random networks with a
two-camp structure for 100 subjects and various values of node degree, z, and structural noise, β. Subjects 1–50 are from camp 1 and subjects 51–100 are
from camp 2. The green, red, and white points represent positive, negative, and absent relations, respectively. b Resulting opinion consistency for N=
100 subjects, one seed opinion, and various values of z. The lines show mean values and the shaded regions show the 10th–90th percentile ranges (both
computed from 1000 model realizations for each of 1000 realizations of the relation network). The dotted line labeled ME shows the mean consistency
computed by numerically solving the master equation given by Eq. (3). The dark dashed line shows the expected consistency if its relationship with the
level of noise was linear [C0(β)= 1− 2β]. These results demonstrate that consistency decreases quickly with structural noise. c The consistency
distributions obtained using Eq. (3) for β= 0.1, one seed subject, and a growing number of subjects, N. As N increases, the distributions shrink and their
peaks shift toward zero.
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σC(N) is also proportional to N−2β when β ≤ 1/4. When β > 1/4,
the leading term becomes proportional to N−1/2. These analytic
results agree with numerical simulations of the model (Fig. 3a, b
and Fig. S1 in the SI).

The behavior demonstrated by Figs. 2b and 3, and supported
by the analytic solution above, has important consequences. It
shows that as the world complexity increases, the formed
opinions become on average less consistent with the seed
opinions and the two-camp structure of the subject network.
Crucially, the opinion consistency is zero in the limit of an
innite number of subjects for any positive level of noise, β, in the
subject relation network: In the limit of an innite-complexity
world, even a tiny amount of noise is enough to nullify opinion
consistency.

The convergence of opinion consistency to zero as N→∞ can
be avoided if the number of seed opinions grows linearly with N
so that the fraction of seed opinions remains constant. Assuming
that NS= fSN, Eq. (5) can be used to show that the mean
consistency approaches to

μC ¼ f 2βS ð8Þ

in the limit N→∞ and the standard deviation of consistency
vanishes as 1=


N

p
(see Sec. S2.2 in the SI). This scaling relation

determines the necessary proportion of seed opinions, fS, needed
to achieve a desired opinion consistency, μC, for given β. These
results are conrmed by numerical simulations shown in Fig. 3c,
d and Fig. S2 in the SI. Despite having a positive limit value,
opinion consistency still decreases quickly with noise in the
relation network when fS is small.

While our ndings hold qualitatively when a different topology
of the relation network is used, the mean opinion consistency
values are heavily affected by the network topology (see Fig. 4).
We run the opinion formation model on a growing preferential
attachment network, a conguration model (CN) network with a
power-law degree distribution, and Watts–Strogatz networks with

various values of the rewiring probability, pr (see Sec. S3 in the SI
for details on the network construction and additional simulation
results). We nd that networks with broad degree distributions
lead to higher opinion consistency which decays with N slower
(see Figs. S3 and S4 in the SI) than in the previously studied
random networks. By contrast, Watts–Strogatz networks yield
lower opinion consistency which further decreases as the
networks become more regular through lowering the rewiring
probability, pr.

Opinion formation using the majority rule. The results
described above hold for the opinion formation model where a
random neighbor of a target subject is chosen as the reference.
We chose this model to study the consequences of a cognitively
easy opinion formation model. At this stage, one might object
that the observed sensitivity of opinion consistency to noise might
be because each formed opinion directly relies on only one pre-
viously formed opinion, and it might disappear if the observer
incorporates the information from more neighbors before form-
ing an opinion. To rule out this potential argument, we investi-
gate a model where all neighbors of a target subject are
considered before forming the opinion. Denote the numbers of
neighbors leading to the adoption of a positive and a negative
opinion (determined as in Fig. 1b) as nP and nN, respectively. If
nP > nN, the observer forms a positive opinion. If nN > nP, the
observer forms a negative opinion. If nP= nN, a random opinion
is formed. We refer to this as the majority opinion formation rule.
It is more demanding than the original random neighbor rule
based on choosing a random neighbor as it assumes that the
observer carefully collects all evidence for forming an opinion on
a target subject. The majority rule is nevertheless still a local rule
as it only considers direct neighbors of a target subject.

Using the majority rule, a scaling analogous to Fig. 3 can be
observed (Fig. 5a, b) when the number of seed opinions is xed.
The important difference is that the scaling exponent now
depends on both β and z whereas a higher mean degree, z,

Fig. 3 Scaling of opinion consistency in synthetic worlds.Mean opinion consistency, μC, and the standard deviation of consistency, σC, as functions of the
number of subjects, N, for regular random networks with node degree z= 50 and various levels of structural noise, β. The symbols and error bars show the
mean and three times the standard error of the mean, respectively, obtained by running the model on 1000 network realizations. The solid lines show
μC(N) and σC(N) obtained by solving the master equation (Eq. (6) and Eq. (S6) in the SI). a, b Results for a single seed opinion. In this scenario, both μC and
σC converge to zero as N grows: There is a tension between opinion consistency and the world’s complexity. c, d Results for a xed fraction of seed
opinions, fS, when the number of seed opinions is NS= fSN; here fS= 0.01. In this scenario, the tension between consistency and complexity is prevented: μC
converges to f2βS (c) and σC converges to zero (d).
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generally leads to μC(N) and σC(N) decaying slower with N.
Except for the smallest used noise and the highest used degree (β
= 0.05 and z= 50), all slopes of linear ts between ln μCðNÞ and
lnN are signicantly positive. Since the majority rule does not
lend itself to analytical computation, whether the limit of μC(N) is
indeed positive when β is sufciently small and z is sufciently
high remains an open question. When the fraction of seed
opinions, fS, is xed, μC(N) converges to a positive value and
σC(N) vanishes as N grows (Fig. S5 in the SI). The scaling of the
majority rule and the random neighbor rule is thus qualitatively
the same when fS is xed. Figure 5c shows mean opinion
consistency as a function of structural noise for xed fS when the
number of subjects is large. We see that when the network density
is low (z= 4), the majority rule achieves results that are
comparable with those of the random neighbor rule. When z
increases, the majority rule leads to signicantly more consistent
opinions than the random neighbor rule. It has to be noted,
though, that when z is large, the cost for the observer to collect
and analyze all information for opinion formation is large too.

The effect of opinion updating on opinion consistency. To
focus on the opinion formation mechanism alone, the original
model assumes that the formed opinions cannot be changed
anymore. In real life, however, we occasionally re-evaluate our
positions. This re-evaluation can be included in the model by
allowing the opinions to be updated as it is, in fact, common in
the opinion formation literature17,38,39.

To incorporate an updating mechanism while preserving the
spirit of the model, we assume that in the rst phase, all opinions
are formed using the original model. In the second phase, target
subjects for opinion updating are repeatedly chosen from all
subjects at random. Opinions are updated in the same way as they

have been formed in the rst phase, i.e., using the random
neighbor rule or the majority rule. Simulation results (see Fig. S6
in the SI) show that the effect of opinion updating markedly
differs between the two opinion formation rules. When the
random neighbor rule is used, opinion consistency substantially
decreases with the number of updated opinions. The reason for
this decrease lies in the opinion formation rule which relies on
one randomly chosen neighbor of the target subject. Noise in the
relation network thus continues to accumulate through updating
which thus lowers opinion consistency. By contrast, opinion
consistency substantially increases with the number of updated
opinions when the majority rule is used. Thanks to its thorough
(albeit local) consideration of opinions on neighbors of the target
subject, the majority rule is capable of identifying and correcting
imbalanced triads in the relation network, and thus increase
opinion consistency.

Opinion formation simulations on real networks. The trust
consistency metric requires information on the ground truth
structure of the relation network (such as the assignment of
subjects to one of the two camps in the case of a two-camp
structure). Before analyzing empirical data, we aim to introduce a
proxy for opinion consistency that does not require such infor-
mation which is typically not available for real data. To this end,
we introduce opinion stability, S, which measures the extent to
which elements of the opinion vector are the same in independent
realizations of the opinion formation model (see “Methods” for
the denition). If an opinion on a given subject always ends up
positive (or always negative), it is a sign of a robust opinion and it
contributes positively to opinion stability. Small opinion stability
indicates that the opinion formation outcomes are highly volatile
and, in turn, they do not comply with the division of subjects in

Fig. 4 Opinion consistency for various topologies of synthetic relation networks. The dependence of mean opinion consistency, μC, on structural noise, β,
for one seed opinion and different numbers of subjects: a N= 100 and b N= 1000. The results are averaged over 1000 model realizations on each of 1000
network realizations, mean degree z≈ 4 for each network topology. The error bars are too small to be shown. CN and pr stand for the conguration model
and the rewiring probability in the Watts–Strogatz model, respectively.

Fig. 5 Scaling of opinion consistency achieved by the majority rule in synthetic worlds. a, b The dependencies of μC and σC on the number of subjects, N,
are affected by both structural noise, β, and mean degree, z (the solid, dashed, and dotted lines are used for z equal 50, 10, and 4, respectively). One seed
opinion is used (NS= 1). The symbols and error bars show the mean and three times the standard error of the mean, respectively, obtained by running the
model on 1000 realizations of regular random networks. c The dependence of mean opinion consistency, μC, on structural noise, β, for a xed fraction of
seed opinions, fS= 0.01, N= 10,000, and NS= fSN. The results are averaged over model realizations on 1000 regular random networks, the error bars are
too small to be shown. The dotted line shows the analytical result μC ¼ f2βS for the random neighbor rule when the same xed fraction of seed opinions,
fS= 0.01, is used.
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